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1. INTRODUCTION

At present, the growth of the performance of supercomputers is achieved by increasing the number of
computational modules and by applying massively parallel accelerators. In the former case, algorithms of
progressively higher degrees of parallelism and scalability are required, while in the latter case, algorithms
have to be adapted to a different architecture and an even more complicated parallel model is required that
combines various types of parallelism, namely, MIMD (Multiple Instruction Multiple Data) and SIMD
(Single Instruction Multiple Data). Associated with significant modifications and sophistication of com�
puting system architectures, this tendency necessitates considerable rearrangements in numerical algo�
rithms and their implementations.

Among the world’s most powerful supercomputers, we can see several systems of hybrid architecture,
such as the Cray Titan (GPU NVIDIA Kepler); Tianhe�1A, Nebulae, TSUBAME 2.0 (GPU NVIDIA
Fermi); and the Intel Stampede with Xeon Phi coprocessors of MIC (Many Integrated Core) architec�
ture. Hybrid computations with massively parallel accelerators used as mathematical coprocessors com�
prise a relatively new area that emerged several years ago. Relevant programming tools and computational
technologies are under active development, and the functional capabilities of the CUDA and OpenCL
programming interfaces are being constantly supplemented.

The transfer of algorithms to graphics processing units (GPUs), which differ considerably from central
CPUs, is a rather complicated problem. For example, matrix�vector multiplication for sparse matrices of
arbitrary structure obtained in discretization on unstructured meshes is considered in [1]. This operation
is a major one in iterative methods intended for systems of linear algebraic equations (SLAEs) arising in
problems with unstructured discretization of the computational domain. Comprehensive optimization
approaches applied to this, in fact, simple operation give an idea of the complexity of working with GPUs.
The results presented in [2] for various sparse matrices suggest that even highly optimized implementa�
tions can achieve only a few percent of the peak performance of GPU devices for such operations with low
specific computational costs per data item and with irregular memory access.

Nevertheless, GPUs are becoming increasingly more popular in computational fluid dynamics (CFD)
and computational mathematics overall. For example, a review of various numerical GPU applications
based on the CUDA programming model can be found in [3]. In gas dynamics simulation, GPUs are most

Adaptation and Optimization of Basic Operations 
for an Unstructured Mesh CFD Algorithm for Computation 

on Massively Parallel Accelerators
P. B. Bogdanova, A. V. Gorobetsb, and S. A. Sukovb

a Scientific Research Institute for System Studies, Russian Academy of Sciences, 
Nakhimovskii pr. 36�1, Moscow, 117218 Russia

b Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia
e�mail: bogdanov@niisi.msk.ru, andrey.gorobets@gmail.com, office@keldysh.ru

Received February 11, 2013; in final form, March 13, 2013

Abstract—The design of efficient algorithms for large�scale gas dynamics computations with hybrid
(heterogeneous) computing systems whose high performance relies on massively parallel accelerators
is addressed. A high�order accurate finite volume algorithm with polynomial reconstruction on
unstructured hybrid meshes is used to compute compressible gas flows in domains of complex geom�
etry. The basic operations of the algorithm are implemented in detail for massively parallel accelera�
tors, including AMD and NVIDIA graphics processing units (GPUs). Major optimization approaches
and a computation transfer technique are covered. The underlying programming tool is the Open
Computing Language (OpenCL) standard, which performs on accelerators of various architectures,
both existing and emerging.

DOI: 10.1134/S0965542513080046

Keywords: gas dynamics, parallel computations, unstructured meshes, GPU, OpenCL.



www.manaraa.com

1184

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 53  No. 8  2013

BOGDANOV et al.

widely used in computations based on lattice Boltzmann methods (LBM). Examples of LBM algorithms
can be found, for example, in [4–6]. The explicit nature of algorithms and simplicity of the data structure
inherent in these methods is consistent with the GPU architecture.

An example of a finite�difference CFD algorithm designed for computations on GPU clusters with the
use of MPI and CUDA was presented in [7], where rather high performance and parallel efficiency was
achieved on a relatively large number of GPUs. In [8] another multi�GPU algorithm for structured grids
was described, which also demonstrated considerable benefits of using accelerators. However, in all the
cited works, computations were implemented on CUDA for NVIDIA GPUs, which does not allow using
other accelerator architectures, such as AMD GPUs or Intel Xeon Phi GPUs of MIC architecture.

In this paper, we consider a high�order accurate finite volume algorithm on unstructured hybrid grids,
which is much more complicated for GPU implementation. Spatial discretization is based on a polyno�
mial reconstruction scheme with variables specified at the centers of grid elements. A similar approach to
spatial discretization is described, for example, in [9]. The underlying programming tool is the OpenCL
standard, which performs on accelerators of various architectures, both existing and emerging.

The original parallel algorithm for CPU has two�level parallelization adapted to supercomputer archi�
tecture with multicore processors with tens of thousands of cores. At the first level, MPI is used to join the
nodes in the framework of a distributed memory model. At the second level, OpenMP (Open Multipro�
cessing) is used in the framework of a shared memory model for parallelization over the processor cores.

This paper deals with the transfer and adaptation of the basic operations in the above algorithm to the
architecture of massively parallel accelerators, which are used at the third parallelization via OpenCL. The
optimization of the algorithmic operations in the AMD and NVIDIA architectures is examined in detail.
Two operations are discussed that are most computationally expensive and complicated from the point of
view of GPU implementation, namely, the determination of polynomial reconstruction coefficients and
the computation of fluxes through control volume faces. The features of the software implementation and
performance�enhancing approaches are described in detail. This paper focuses only on computational
optimization and does not address the design of communication schemes for MPI and CPU�GPU
exchanges with overlapping computations and data transfer. This is a separate rather complicated problem
to be addressed elsewhere.

This paper is organized as follows. The underlying mathematical model, spatial discretization, and the
numerical method used are described in Section 2. The implementation of the algorithmic operations for
the GPU architecture is covered in Section 3. The performance characteristics obtained for NVIDIA and
AMD GPUs are discussed in Section 4. Finally, the main results of this work are summarized in Section 5.

2. MATHEMATICAL MODEL AND NUMERICAL IMPLEMENTATION

Below, we describe a numerical algorithm for gasdynamic simulation on unstructured meshes. This
algorithm is used to address performance�enhancing strategies for GPU computations.

2.1. Mathematical Model

We consider the numerical simulation of inviscid compressible gas flows described by the Euler equa�
tions

(1)

where Q = (ρ, ρu, ρv, ρw, E)T is the vector of conservative gasdynamic variables. The convective fluxes
F1(Q), F2(Q), and F3(Q) are defined as
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Initially, the conservative gasdynamic variables in all grid cells are set equal to identical values corre�
sponding to the unperturbed flow parameters Q

∞
.

In formula (2), u = (u, v, w) are the Cartesian velocity components, ρ is the density, p is the pressure,
E = ρ(u2 + v2 + w2)/2 + ρε is the total energy, and ε is internal energy. System (1), (2) is made closed by
adding the perfect gas law p = ρε(γ – 1), where γ is the ratio of specific heats.

2.2. Spatial Discretization and Numerical Method

In the framework of the finite volume method, the computational domain of the problem is divided
into cells, which are equivalent to one of four types of polyhedra: a tetrahedron, hexahedron, quadrilateral
pyramid, or triangular prism (Fig. 1a). Sequential numbering of elements is introduced inside the result�
ing unstructured hybrid mesh. Each of NE grid elements is uniquely determined by its unique index ID,
which belongs to the numerical interval [0; NE – 1]. Below, we introduce notation for the geometric
parameters of cells and their faces necessary in the computation:

VID is the volume of a cell;
(xcID, ycID, zcID) are the coordinates of the barycenter of a cell;
NSID is the number of cell faces;

, k ∈ [0, NSID – 1], are the indices of the grid elements sharing a face with the element ID;

 the face shared by the cells with indices ID1 and ID2;

 is the area vector of the face  codirectional with the outward normal

to the cell ID1;

 are the coordinates of the barycenter of the face .

The integral�averaged values of conservative gasdynamic variables are assumed to be defined in grid
elements by the formula

(3)
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Fig. 1. (a) Types of cells and (b) example of a stencil for the polynomial reconstruction scheme.
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where fID is the value of one of the following five variables: ρID, ρuID, ρvID, ρwID, or EID. In the case of first�

order accurate explicit time�stepping, the gasdynamic variables  at the time level n – 1 are calculated
using the formula

where τ is the current time integration step. The convective flux ΦID in a cell is the sum of the convective
fluxes through its faces:

In turn, the convective flux  through the face ID/  is computed using the Roe scheme

(see [10]) (FROE) and depends on the geometric parameters of the face and the values of the conservative
gasdynamic variables to the left ( ) and right ( ) of its barycenter:

(4)

Assuming that the values of the variables inside a cell do not vary, we have the equalities  = QID

and  =  and formula (4) becomes

which corresponds to first�order accuracy in space.
The order of accuracy of the spatial approximation can be increased by using polynomial reconstruc�

tion of gasdynamic variables inside grid cells. The behavior of the function fID (3) inside a cell is described
by a quadratic polynomial of the form

Here, , h ∈ [0, 5], are six constant coefficients denoting the cell mean of the elementary polynomials

(x – (y – (z – , α1 + α2 + α3 ≤ 3, whose values depend on the shape of the cell ID,

while  (l = 1, …, 8) are the polynomial coefficients to be determined.

In the case of polynomial extension, the values of the variables at the face center with coordinates
 can be computed using the polynomial reconstruction of the variables in
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QID
n 1+

QID
n 1+

QID
n ΦIDτ

VID

����������,+=

ΦID ΦS
ID/Ik

ID.

k 0=

NSID 1–

∑=

ΦS
ID/Ik

ID Ik
ID

QL
ID/Ik

ID QR
ID/Ik

ID

ΦS
ID/Ik

ID FROE QL
ID/Ik

ID QR
ID/Ik

ID n
ID/Ik

ID, ,⎝ ⎠
⎛ ⎞ .=

QL
ID/Ik

ID

QR
ID/Ik

ID Q
Ik

ID

ΦS
ID/Ik

ID FROE QID Q
Ik

ID n
ID/Ik

ID, ,⎝ ⎠
⎛ ⎞ ,=

PfID
x y z, ,( ) CfID

0
x xcID–( )2

gID
0

–( ) CfID

1
y ycID–( )2

gID
1

–( )+=

+ CfID

2
z zcID–( )2

gID
2

–( ) CfID

3
x xcID–( ) y ycID–( ) gID

3
–( )+

+ CfID

4
x xcID–( ) z zcID–( ) gID

4
–( ) CfID

5
y ycID–( ) z zcID–( ) gID

5
–( )+

+ CfID

6
x xcID–( ) CfID

7
y ycID–( ) CfID

8
z zcID–( ) fID.+ + +

gID
h

xcID)
α1 ycID)

α2 zcID)
α3

CfID

l

mx
ID/Ik

ID my
ID/Ik

ID mz
ID/Ik

ID, ,( )

ΦS
ID/Ik

ID FROE PQID
mx

ID/Ik
ID my

ID/Ik
ID mz

ID/Ik
ID, ,( ) PQ

Ik
ID

mx
ID/Ik

ID my
ID/Ik

ID mz
ID/Ik

ID, ,( ) n
ID/Ik

ID, ,⎝ ⎠
⎛ ⎞ .=



www.manaraa.com

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 53  No. 8  2013

ADAPTATION AND OPTIMIZATION OF BASIC OPERATIONS 1187

In the case of a quadratic polynomial, this increases the order of accuracy of the convective flux in space.

An algorithm for determining the polynomial coefficients  is as follows. In the initialization of the

geometric parameters of the problem, a spatial stencil consisting of NGID elements with indices , m ∈
[0, NGID – 1] is constructed around each grid element (Fig. 1b). The stencil construction method is not
of key importance. For example, it can be constructed by combining elements from several neighboring
levels within a dual graph, or elements lying within a sphere of given radius centered at the barycenter of
the given element, etc. However, an important point is that the number of stencil elements and their rel�
ative topological positions are not defined in the general case and can differ for each element.

After a number of preliminary transformations associated with setting up an overdetermined SLAE and
its solution by the least squares method, we obtain a matrix AID and the determination of the polynomial

coefficients  for each gasdynamic variable is reduced to the multiplication of a matrix by a vector:

(5)

The elements of AID remain unchanged in the course of the computation. The fluxes through cell faces
belonging to the boundary of the computational domain are computed according to one of the following
two variants of boundary conditions: (1) free boundary (inflow or outflow boundaries) and (2) rigid wall.
In the first case, the cell containing the face is assumed to be far away from the body surface; therefore,
the behavior of the flow in this area can be assumed to roughly correspond to the unperturbed flow Q

∞
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)T. Accordingly, the flux through the face ID/∞ can be calculated using the formula

The flux through the cell face ID/W lying on the body surface is determined by the condition that the
normal velocity to the boundary surface at the barycenter of the face is set equal to zero:

As initial conditions in the problem, identical values of the conservative gasdynamic variables corre�
sponding to the unperturbed flow Q

∞
 are set in all the grid cells.

3. IMPLEMENTATION OF THE ALGORITHMIC OPERATIONS

The above numerical method can be formalized in the form of a block diagram as shown in Fig. 2.
From the point of view of software implementation, the most complicated stages (namely, the computa�
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tion of polynomial coefficients and convective fluxes) are of primary interest. Additionally, the problem is fur�
ther simplified and convective fluxes are computed only through internal faces of control volumes.

3.1. Determination of Polynomial Coefficients

For a high�order accurate numerical scheme with variables determined at the centers of elements, we
use an approach based on polynomial approximation. Before describing the software implementation of
the basic computational modules of the algorithm, we define the variables and arrays used to store the
parameter values employed in the computations.

Ne is the total number of grid elements.
Nis is the total number of internal faces in mesh cells.
Q is the array of averaged values of gasdynamic variables in grid elements.
AP is the array of averaged geometric coefficients gID and coordinates of the barycenters of grid ele�

ments.
PC is the array of polynomial reconstruction coefficients for gasdynamic variables in grid elements.
STE, STA are the arrays containing lists of indices of grid elements forming stencils for determining the

polynomial reconstruction coefficients.
MAT is the array of elements of the matrices AID required for determining the polynomial reconstruc�

tion coefficients.
CE is the array of sums of convective fluxes through the faces of mesh cells.
CVF is the array of geometric parameters of internal faces of mesh cells. The structure with face param�

eters contains the indices of the adjacent cell faces and three components of the area vector.
The data inside the arrays are grouped elementwise; i.e., the averaged value of the nth gasdynamic vari�

able inside the grid element indexed by ID is written to the array cell Q[ID ∗ 5 + n]. In a similar manner,
the sum of the fluxes of the same variable through the faces of this grid element is stored in the cell
CE[ID ∗ 5 + n]. Inside the array APC, the record corresponding to an element consists of nine real num�
bers, namely, the values of six constant geometric coefficients gID, followed by three coordinates of the
barycenter of the element. The polynomial coefficients within elementwise records in PC are grouped
according to gasdynamic variables: for each element, five groups (ρ, ρu, ρv, ρw, and E for each variable)
consisting of nine coefficients are written in succession.

The number of elements in the stencil of the grid cell indexed by ID and the list of indices of these ele�
ments are stored in the arrays STA and STE. The dimension of the stencil in a cell is determined by the
difference NGID = STE[ID + 1] – STE[ID], while the indices of the stencil elements are contained in the
cells of the array STA starting from STA[STE[ID]] to STA[STE[ID + 1] – 1] inclusive. The coefficients of
the (9 × NGID) matrix AID are ordered in columns and are stored in the array MAT starting from the element
MAT[STE[ID] ∗ 9].

Computation of time step

Data exchange between processors

Determination of polynomial coefficients
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Fig. 2. Block diagram of the computational algorithm.
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As was previously said, the procedure for determining polynomial coefficients is rather simple algorith�
mically and consists of matrix�vector multiplications for each gasdynamic variable in (5). Combining five
matrix�vector multiplications for each of the variables yields a single matrix�matrix multiplication: PCID =
AID × BID. The elements of the matrix AID do not vary in the course of the computation. In turn, the col�
umns of the matrix BID of size (NGID × 5) are filled with the differences between the values to five gasdy�
namic variables in the stencil cells and the cell ID at the current time level.

The iterations of the outer loop over the elements are independent in the sense of writing the results to
the array PC. Therefore, to parallelize this loop in a shared memory model, it is sufficient, for example, to
use a suitable OpenMP instruction with a static iteration distribution between threads (in fact, between
processor cores) specified as an instruction parameter.

However, according to the algorithmic formulation of the problem (see Section 2.2), the stencils of the
grid elements can differ in size. Accordingly, the static iteration distribution can be of low performance
because of the nonuniform load balancing. Optimal load balancing can be achieved, first, by setting a
dynamic iteration distribution as an instruction parameter and, second, by explicitly marking the loop
iteration segments to be processed in parallel. In the test numerical experiment considered as an example,
the stencil used to determine polynomial coefficients in grid cells is formed by uniting several connection
levels of the current cell in the framework of a dual graph. The first connection level consists of the cells
sharing a face with the element ID. The second level consists of the elements sharing a face with the ele�
ments of the first connection level, etc. The stencil is extended until the prescribed characteristics of the
corresponding SLAE are achieved.

Formally, the final difference between the minimal and maximal stencil sizes is rather wide (Fig. 3).
However, the actual load unbalance for a static computation distribution is about 10%, and this parallel�
ization variant turns out to be optimal in terms of computation time. Although the multiplication of two
matrices is frequently used as an illustration of the benefits of using GPU computations, it is rather prob�
lematic to achieve acceptable performance in this case. First, we need to choose the main direction of
optimization for the algorithm under development. For this purpose, an elementary task is estimated in
terms of the amount of computation per data item. By analogy with the CPU, an elementary task is as yet
regarded as determining polynomial coefficients for a grid cell.

In the course of computing polynomial reconstruction coefficients for five gasdynamic variables in the
grid cell ID, 116 ∗ NGID + 408 bytes of data have to be loaded from and stored in the device memory. The
number of floating�point operations is 95 ∗ NGID. Thus, for the grid�averaged stencil size NGID = 36, the
amount of computation is 0.75 per byte.

In view of the characteristics of AMD 7970 or NVIDIA C2050 devices, for the time required for mem�
ory access to be equal to the computation time within a procedure, it is necessary that the number of arith�
metic operations per byte be approximately 3.6 (or 29 arithmetic operations per double�precision value).
In other words, the amount of computations per data item is considerably less in our case. Therefore, the
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Fig. 3. Histogram of the number of grid elements against the stencil size for the considered test problem (inviscid subsonic
flow past a sphere, M = 0.1, grid of 679339 elements).
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performance of the considered subprogram depends nearly completely on the performance of memory
access. Consequently, the main direction of algorithmic optimization should be the achievement of the
maximum possible coefficient of multiprocessor load. However, in view of the hardware restrictions, this
cannot obviously be achieved by treating the processing of a single grid element as an elementary task. It
is necessary to find a less resource�intensive unit of parallelism; i.e., the procedure for determining poly�
nomial coefficients in the cell ID has to be divided into independent subproblems. The following algo�
rithm was proposed for executing the computations underlying this work. The polynomial reconstruction
coefficients are computed by a warp (which is a group of 32 threads executed simultaneously in the frame�
work of SIMD parallelism on a GPU) and this is a cyclic process. The amount of work executed at each
step in a cycle consists of the multiplications of six columns of AID and six rows of BID. The threads in a
warp are divided into two half�warps, since the global memory is simultaneously accessed by a half of warp.
The elements of the processed part of AID are collectively read by the warp threads in shared memory.
Next, the threads of the first and second half�warps operate with the corresponding part of the loaded
matrix block. The threads of the first half�warp multiply the first three columns of the block by the first
three rows of the first half�block of BID, while the threads of the second half�warp operate with the second
half�blocks of AID and BID. Thus, at this stage, the desired coefficient matrix PCID exists in the form of its
half�sums for the threads in the first and second half�warps (Fig. 4). Each of the threads of a half�warp,
except for the last, is responsible for three consecutive elements in a column of a copy of PCID correspond�
ing to its half�warp, as denoted in Fig. 4 (the indices in the cells of PC blocks correspond to the thread
index). In the case of this distribution, the value of only one gasdynamic variable in the cell ID is stored in
a thread in register memory. The values of the variables corresponding to the column number in a thread
for the grid elements within the stencil from the processed part of the block of BID are also loaded directly
in register memory. After the block matrix multiplication procedure is completed, the copies of PCID

obtained in the first and second half�warps are summed in shared memory, followed by writing the final
result to the global memory of the device.

The software implementation of the algorithm requires the allocation of 34 registers per thread, which
corresponds to 58% load of an NVIDIA C2050 GPU (up to 896 threads can be executed simultaneously).
Specifically, for this model, threads are united in blocks of 128 units, and a single block processes four grid
cells. It should be noted that, in general, the requirement of the algorithm for the size of the necessary reg�
ister memory cannot be theoretically estimated. For this reason, the sizes of the multiplied matrix blocks
and other parameters affecting the resources required by the algorithm were chosen experimentally in the
course of debugging and can vary for various devices.
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Fig. 4. Block matrix multiplication algorithm. For each position in the blocks of PCID, the indices of the corresponding
active thread in a half�warp are indicated.
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3.2. Computation of Fluxes through Control Volume Faces

Algorithmically, the procedure used to compute the sum of convective fluxes through internal faces of
grid cells is rather simple. If the computation of the flux through a face is regarded as an elementary task,
then the following operations are performed for each face in the loop over the faces: the gasdynamic vari�
ables are determined on two sides on the face barycenter, the flux through the face is computed (using the
Roe scheme), and the resulting values are summed in element stores of the flux array for the adjacent cells.

In the case of a multicore CPU, the basic problem of parallelizing this procedure is to eliminate the
situation where fluxes computed by different parallel processes are simultaneously summed in the same
cells of the array CE. Parallelization variants for flux computation in a shared memory model were
described in detail in [11].

If the above algorithm is implemented on GPUs, the number of arithmetic operations per data item is
even fewer than in the case of polynomial coefficient determination. A bottleneck is the flux computation
based on the Roe scheme (see [10]). This procedure is highly expensive (up to 40 double�precision vari�
ables have to be stored in the course of its operation) and algorithmically cannot be split into independent
subproblems. Thus, the optimization of an algorithm represented as a single general loop over faces is
unpromising. To enhance the performance of the computations in this case, the entire problem has to be
split into stages. For example, the computation of sums of convective fluxes can be represented as three
sequential stages:

(i) the computation of gasdynamic variables to the left and right of the barycenter of faces;
(ii) the computation of convective fluxes through cell faces;
(iii) the summation of computed fluxes in cells.
The implementation of this approach requires additional arrays (for gasdynamic variables on grid

faces, convective fluxes through faces, and indices of cell�belonging faces). However, stages (i) and (iii),
which involve reads and writes of large amounts of data, are well parallelized in the framework of the
SIMD model. Moreover, a theoretical estimate shows that the total amount of data read from and written
to the global memory of the device does not exceed that required in the implementation of the algorithm
on a CPU.

Stage (ii) is executed for the set of cell faces, while stages (i) and (iii), for the set of cells. These stages
involve an additional data structure (so�called dual graph of control volume connections), which is similar
to the arrays STE and STA in the case of a polynomial stencil and, for each cell, stores the lists of indices
of its faces.

It should be noted that the summation stage is necessary to eliminate conflicting accesses to data, and
it can be avoided. For example, the set of cell faces can be divided into subsets that do not contain two
faces from a single cell. Such a variant was considered, for example, in [12]. When such a subset is pro�
cessed by parallel threads, the possibility of conflicts related to data modification in the same cells is ruled
out by definition. In this implementation variant, a suitable coloring algorithm is applied to the dual graph
of the grid, in which the edges correspond to faces, and the nodes to cells. Naturally, in this case, the set
of faces is processed in several steps, whose number cannot be less than the maximum number of faces in
the cells. However, this variant is much less efficient, even though it involves no additional summation
stage. This is associated with the inefficient memory access pattern, which prevents coalescing when data
are read from cells. As a rule, the faces are numbered so that they have close, often successive indices
within a single cell (at least, for most faces). This means that neighboring threads usually access the same
cell, i.e., the same memory data, which leads to coalescing and reduces the time required for data access.
If the set of faces is divided into subsets, this situation cannot occur by definition, since subsets do not con�
tain faces belonging to a single cell. The hopelessness of this approach for the given operation is also sup�
ported by the results represented in [12].

Consider in more detail the implementation parameters optimized for an NVIDIA C2050 device. For
the computation of variables on a face (stage (i))), a block of 320 threads initializes values for 24 grid cells,
i.e., initializes values to the left or right of the faces adjacent to the elements. All the threads of the block
participate in reading values (such as grid function values, averaged coefficients, and polynomial coeffi�
cients) to shared memory. However, only 128 threads (five threads per cell, which corresponds to four
warps with the 16th and 32nd threads being inactive) participate in the computation. This initialization
configuration is caused by the limited size of shared memory. The low load coefficient and the emulation
of register variables in the global memory in the flux computation based on the Roe scheme are associated
with the high costs of the algorithm. However, in the case under study, this cannot be avoided in principle.
Each thread in the block computes the flux through a single face. At the flux summation stage, a block of
512 threads computes sums for 96 grid elements (5 threads per cell; the 16th threads in the half�warps are
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inactive). The cost of this procedure is minimal. As a result, the maximal load performance of the GPU
can be achieved.

4. PERFORMANCE OF THE COMPUTATIONS

Only double�precision computations were considered. The following devices were used for the tests:
Intel Xeon X5670 CPU, 6 cores, 2.93 GHz frequency, peak performance of 70 GFLOPs, 32 GB/s

memory bandwidth, 95 W power;
NVIDIA Fermi C2050 GPU, 14 multiprocessors, 1.15 GHz frequency, peak performance of

515.3 GFLOPs, 144 GB/s memory bandwidth, 238 W power;
AMD Radeon HD 7970 GPU, 32 multiprocessors, 0.92 GHz frequency, peak performance of

947 GFLOPs, 264 GB/s memory bandwidth, 250 W power.
The NVIDIA and AMD GPUs are 7.4 and 13.5 times superior to the CPU in terms of peak perfor�

mance, respectively. However, the power consumption of the GPUs is roughly 2.5 times higher. A natural
estimating criterion for the performance of the GPUs would be their speedup relative to the CPU in excess
of the power consumption.

Parallelization over the CPU cores relies on the OpenMP interface [13] for a shared memory model.
The software implementation for the GPUs makes use of OpenCL version 1.1 standard (see [14]).

As a test problem for evaluating performance characteristics, we considered computation on a grid of
679339 elements. More specifically, the inviscid subsonic flow past a sphere (M = 0.1) was simulated,
although the formulation of the computation was of no importance in this context, since the basic algo�
rithmic operations were considered separately.

Table 1 shows the results obtained for operation of computing polynomial reconstruction coefficients.
The effective performance and the percentage of the peak performance for a device are given for a single
CPU core, the entire 6�core CPU, and the NVIDIA and AMD GPUs. The speedup presented in the table
was calculated with respect to the time for a single CPU core. Let us try to estimate the performance of
the proposed implementation in terms the producer�announced characteristics of the GPUs. Relying on
the maximum read and write rate and the performance of the computations, we theoretically estimate the
minimum time required for the execution of the operation. The total amount of global memory reads and
writes is 2.96 GB/s. For NVIDIA 2050, the global memory access rate is 144 GB/s, which gives a theoret�
ical time of 0.0205 s required for data copying, while, for AMD 7970 (264 GB/s), this characteristic is
0.011 s. The total amount of computations is 2.21 × 10243 floating�point operations. In view of the peak
performance of the devices, the theoretical computation time is 0.0043 s for NVIDIA C2050 and 0.0023 s for
AMD 7990. It can be seen that the computation time is much less than the time spent on memory access.
The total theoretical time is 0.0248 s for NVIDIA C2050 and 0.0133 s for AMD 7970, which means per�
formance of about 55% for NVIDIA and 95% for AMD without taking into account computations hidden

Table 1. Performance for the computation of polynomial reconstruction coefficients

Device Time, s Performance, 
GFLOPS

Percentage of peak 
performance Speedup

1�core CPU 0.7078 3.1 26% 1

6�core CPU 0.1450 15.2 21% 4.88

NVIDIA C2050 0.045 50 9.7% 15.6

AMD 7970 0.014 160 17% 50.6

Table 2. Performance of convective flux computation

Device Time, s Performance, 
GFLOPS

Percentage of peak 
performance Speedup

1�core CPU 0.261 2.5 21% 1

6�core CPU 0.059 11 16% 4.42

NVIDIA C2050 0.0168 38 7.4% 15.5

AMD 7970 0.0056 115 12% 46.6
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by memory accesses. To obtain a lower bound, we consider an ideal case when computations are com�
pletely hidden by memory accesses. Then the performance is at least 46% for NVIDIA C2050 and 79%
for AMD 7970.

Similarly, the results for the operation of convective flux computation are presented in Table 2. Table 3
gives the time distribution between three stages of the operation.

Finally, Table 4 compares the performances of the 6�core CPU and the GPUs. It can be seen that, in
all the cases, the resulting speedup exceeds the power relation, which is approximately 2.5.

A comparison of the AMD 7970 and NVIDIA C2050 performances show that, on average, the former
is about 3.1 times superior to the latter for the given operations. Note that the ratios of the peak perfor�
mances and the bandwidths of these devices are roughly 1.8. This suggests that the performance of
AMD 7970 is much higher, which can possibly be explained by the insufficient number of registers per
thread in NVIDIA (or by the weaker computational architecture as a whole).

To conclude, it should be noted that a similar implementation for each of the operations was also made
on the NVIDIA GPU based on the CUDA platform. A comparison of the performances of the CUDA�
and OpenCL�based implementations did not reveal noticeable differences for NVIDIA C2050.

5. CONCLUSIONS

The most complicated and computationally costly operations used in a finite�volume CFD algorithm
based on a high�order accurate numerical scheme on unstructured hybrid grids were implemented for
architectures of massively parallel accelerators. Based on the optimization approaches described, the
effective performance of GPUs achieved up to 17% of their peak performance. These characteristics are
close to the theoretical limit for this type of operations, which are substantially limited by the memory
bandwidth and the irregular memory access pattern. In view of the peak bandwidth, the achieved perfor�
mance was about 40–50% for NVIDIA C2050 and more than 80% for AMD 7970.

Further studies will be focused on the optimization of the communication scheme for data exchanges
between MPI processes and between the CPU and accelerators due to overlapping computations and data
transfer. A specialized infrastructure of heterogeneous computations [15] will be used to achieve auto�
mated overlapping exchanges and computations.
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Table 3. Time distribution over stages in convective flux computation

Stage
Time, s

NVIDIA C2050 AMD 7970

1. Computation of values on a face 0.0093 0.0034

2. Computation of flux through a face 0.0055 0.0014

3. Summation 0.002 0.0008

Total 0.0168 0.0056

Table 4. Comparison of GPU and CPU performances

Operation
Speedup with respect to 6�core CPU

NVIDIA C2050 AMD 7970

Computation of polynomial coefficients 3.22 10.3

Computation of fluxes through a face 3.51 10.5

Total 3.32 10.4
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